
1

Reducing Buffer Requirements in Core Routers
using Dynamic Buffering

Girish B.C. and R. Govindarajan
Supercomputer Education and Research Centre,

Indian Institute of Science, Bangalore 560 012, India
girish@hpc.serc.iisc.ernet.in, govind@serc.iisc.ernet.in

Abstract—Earlier studies have exploited statistical multiplexing
of flows in the core of the Internet to reduce the buffer require-
ment in routers. Reducing the memory requirement of routers is
important as it enables an improvement in performance and at
the same time a decrease in the cost. In this paper, we observe that
the links in the core of the Internet are typically over-provisioned
and this can be exploited to reduce the buffering requirement in
routers. The small on-chip memory of a Network Processor (NP)
can be effectively used to buffer packets during most regimes of
traffic. We propose a dynamic buffering strategy which buffers
packets in the Receive and Transmit buffers of a NP when
the memory requirement is low. When the buffer requirement
increases due to bursts in the traffic, memory is allocated to
packets in the off-chip DRAM. This scheme effectively mitigates
the DRAM access bottleneck, as only a part of the traffic is
stored in the DRAM. We build a Petri net model and evaluate
the proposed scheme with core Internet like traffic. At 77% link
utilization, the dynamic buffering scheme has a drop rate of
just 0.65%, whereas the traditional DRAM buffering has 4.64%
packet drop rate. Even with a high link utilization of 90%, which
rarely happens in the core, our dynamic buffering results in a
packet drop rate of only 2.17%, while supporting a throughput
of 7.39Gbps. We study the proposed scheme under different
conditions to understand the provisioning of processing threads
and to determine the queue length at which packets must be
buffered in the DRAM. We show that the proposed dynamic
buffering strategy drastically reduces the buffering requirement
while still maintaining low packet drop rates.

Index Terms—Buffer management, Network Processors, Internet
core traffic

I. I NTRODUCTION

Network processors buffer packets to accommodate varia-
tions in network traffic and link utilization, and to avoid
packet losses in such scenarios. A widely used rule of
the thumb states that the buffer size required is equal to
round trip time∗ transmit rate. The size of packet buffer has

a direct impact on cost and performance of a router and hence
has been a topic of interest in recent times [1], [2]. Previous
studies on NPs [3], [4] have shown that buffering packets
in the DRAM is a performance bottleneck due to the large
latency of accessing the DRAM banks and limited bandwidth
of the data bus. Appenzeller et al. [1] have shown that for core
routers, the buffer size can be significantly reduced due to the
statistical multiplexing of a large number of flows. They show
that the buffer requirement for a router with 10,000 flows,
could be as small as 1% of the initial size suggested by the
above mentioned rule of thumb, while still keeping the link
utilization above 98%.

We observe that due to over-provisioning of links in a core
router, their utilization is low during most regimes of network
traffic. The low utilization of the output links can be used
as an orthogonal source for reducing the buffer requirement.
We propose to use the on-chip receive and transmit buffers
for storing the network packets whenever there is no buildup
of packets in the NP. However when there is an increase in
the number of outstanding packets due to bursty traffic, our
approach selectively buffers the packets in off-chip DRAM
memory. This avoids the overflow of receive and transmit
buffers and hence reduces packet drops. At the same time,
it reduces the DRAM requirement in the router and hence
its cost. An added benefit of the proposed scheme is that it
mitigates the DRAM access bottleneck which was shown to
be one of the bottlenecks in achieving higher throughput rates
in NPs [3], [4].

For evaluating the proposed dynamic buffering strategy under
real workloads, we develop a Petri net model that generates
network traffic with similar characteristics as observed inthe
core of the Internet. This traffic is given as input to a Petri
net model of IP forwarding application which implements
dynamic buffering. With a mean line rate of 5.41Gbps and
variation of 5.52%, the dynamic buffering scheme has a packet
drop rate of 0.03% whereas the DRAM buffering scheme has
a packet drop rate of 4%. In comparison, even when the
traffic rate is increased to 7.39Gbps, our dynamic buffering
scheme supports the line rate with a link utilization of 90%
and packet drop rate of only 2.17%. Also, we measure the
effect of system parameters such as the number of processing
threads on performance. With 16 or more threads, we show
that the NP can effectively process traffic rates of 6.21Gbps
with a packet drop rate of 0.7%.

Though we evaluate the proposed buffering mechanism in
the context of IXP 2400 NP, the dynamic buffering scheme is
generic and can be applied to other NPs also. This is because
the IXP 2400 has a similar architecture as that of a generic
NP [5] and we do not assume any IXP specific features for
implementing dynamic buffering.

In the next section, we explain the theory from [1] about
buffer size buffer size requirements in core routers. Sec. III
provides a brief background on NPs and Sec. IV describes
our dynamic packet buffering scheme. The Petri net models
for traffic generation and the dynamic packet buffering scheme
are discussed in Sec. V. Performance evaluation results are
presented in Sec. VI. We present the related work in Sec. VII

CHAIRMAN
Text Box
In the Proceedings of the 18th International Conference on 
 Computer Communications and Networks (ICCCN 2009)



2

and conclude the paper in Sec. VIII.

II. BUFFERSIZING FOR CORE ROUTERS

Let S denote the sum of the congested windows of the flows
passing through the router. The buffer requirement to keep the
output link fully utilized is the difference betweenSmax and
Smin, whereSmax andSmin are the maximum and minimum
values ofS. When a small number of large flows pass through
a congested link, it is observed that there is synchronization
among them [6], [7], [8]; i.e., they experience congestive losses
at the same instant. In this case,(Smax − Smin) is equal to
the product of the aggregate bandwidth and average round trip
time [9], [1], [2]. This is referred to as the Bandwidth Delay
product. Previous studies which used simulation [9] have also
concluded that the buffer requirement should be equal to the
bandwidth delay product in order to maintain full utilization
of bottleneck network links.
Next, we explain the reasons delineated by Appenzeller et

al. [1] for reduced buffer requirement when the output links
are uncongested. In a core router, the start time and the
propagation delay of the individual flows (tpi) are independent
of each other. As a result the flows in the Internet core
have varying RTTs. The senders therefore infer congestion at
different points of time, leading to desynchronization among
flows. The buffer requirement of the individual flows are now
out-of-sync [1], [10]. When the flows are desynchronized, the
difference betweenSmax and Smin reduces. The aggregate
congestion window at timet is the sum of the congestion
window sizes of the individual flows (Wi). It has been shown
using central limit theorem, that the aggregate congestion
window size has a Gaussian distribution around the mean con-
gestion window size [1]. Assuming that individual flows vary
uniformly between[2

3
Wi,

4

3
Wi], whereWi is the congestion

window size of flowi, it has been shown in [1] that a buffer
of size ofBcore that can support a link utilization of 98.99%
is given by

Bcore =
bandwidth delay product

√
number of flows

(1)

III. IXP 2400 NETWORK PROCESSOR

The IXP 2400 (Fig. 1) is a programmable NP that can be
used for a number of network applications such as IPv4
forwarding, network address translation etc. It has 8 simple
in-order processing units called microengines(MEs). EachME
can support up to 8 threads. IXP 2400 has off-chip SRAM
and DDR SDRAM memories. The dual-ported quad data rate
(QDR) SRAM [11] is used to store the program data like the
lookup trie. The SRAM is connected to two on-chip memory
controllers. DDR SDRAM with 4 banks is used to buffer
packets during processing. The SDRAM is connected to the
on-chip memory controller by a 64-bit channel operating at
200MHz. The SRAM size is usually 8MB whereas the DDR
SDRAM size may vary from 64MB to 1GB. There is an on-
chip scratchpad memory of size 16 KB, that may be used
to store temporary variables or setup communication rings
between threads.
The NP is used to perform the data plane operations in a

router such as receiving the packets from the ingress ports,

Fig. 1. Architecture of IXP 2400 Network Processor

performing the IP lookup operation and forwarding the packet
on the egress ports. It has a Media Switch Fabric (MSF) which
is used to connect the MEs to the input and output ports. The
on-chip MSF has two buffers called receive buffer (RBUF)
and transmit buffer (TBUF), each of size 8KB. An incoming
packet is first stored in the RBUF; a free thread is assigned to
process it and it is moved to the DRAM. The thread accesses
the appropriate part of the packet header, performs a lookup
to determine the next hop, modifies the header and moves the
packet to the TBUF. The packet is forwarded on the output
link from the TBUF. The RBUF is used to store the packet
until a thread is assigned for buffering it in the DRAM. The
MSF handles the packets in fixed sized cells called mpackets.
Further details of this NP are given in [12].
Although we used a specific NP such as IXP 2400, and the

traffic rates supported by it, the proposed scheme is applicable
in general for other NPs and for larger traffic as well.

IV. DYNAMIC PACKET BUFFERING

We observe that in the core of the Internet, link utilizationis
less than 50% [13], [1]. As a result, the network processor can
forward packets as soon as the processing is completed and
packet buffers could underflow. We use the fact that buffering
is required only when there is a backlog of packets to be
forwarded and when the output link is fully utilized. Such a
scenario occurs only when a burst of packets is received and
is infrequent in the core of the Internet due to the presence of
a large number of flows and over-provisioning of the links.

Fig. 2. DRAM buffer utilization in the core Internet

Figure 2 shows the buffer requirements with the traditional
DRAM buffering for IPv4 forwarding application with Internet



3

core like traffic. The x-axis shows the buffer size and the y-
axis shows the fraction of time for which the buffer utilization
is less than a given value. We used a network core like traffic
with a mean input rate of 4.76Gbps. The aggregate bandwidth
supported by the output links is 8.1Gbps. This is the typical
usage scenario in core routers. We see that buffer utilization
does not exceed 36.5KB and is less than 16KB for 77% of
the time duration.

This observation shows that, buffering all packets in the
DRAM may not be necessary, if the lookup can be performed
when the packet is still stored in the on-chip memory. IXP2400
has 8KB of on chip Receive buffer (RBUF) to store packets
before they are buffered in the DRAM. Also, there is 8KB
of Transmit buffer (TBUF) which is used to store packets
before they are transferred to the egress ports. Based on the
insight that buffer requirement in core routers can be much
smaller than the bandwidth delay product, we propose to use
the on-chip memory in the NP with a dynamic buffering
strategy wherein packets are stored in the DRAM only when
a backlog of packets is developed in the RBUF. When the
queue length of the output ports is not very high, the packets
could be moved directly from the RBUF to the TBUF. DRAM
buffering is necessary only when a burst of packets is received.
A packet is buffered in the DRAM when the length of the
queue corresponding to its output port increases beyond a
threshold, which we call thehigh watermark. Packet build
up at the output port implies the need for increased buffering
and this larger buffer space is provided by storing the packets
in DRAM.

We do not store all packets in the DRAM, but only packets
destined to the congested output ports, due to which the traffic
to the DRAM reduces substantially. This effectively mitigates
the DRAM databus bottleneck that was observed in [4]. When
the backlog at the output port reduces, i.e when the queue
length for that output port goes below a threshold called the
low watermark, our scheme reverts to normal processing for
that port, wherein packets are directly moved from the RBUF
to the TBUF. We refer to the above scheme as dynamic
buffering scheme, whereas the original approach where all
packets are buffered in the DRAM is referred to as DRAM
buffering scheme.

Moving the mpackets directly from the RBUF to the TBUF
in the dynamic buffering scheme requires a datapath between
the two buffers. This path does not exist in the IXP 2400
architecture or in the generic NP architecture [5]. All the
mpackets have to be moved explicitly through the micro
engines. We propose the addition of this data path as it
could lead to substantial improvements in the throughput of
applications and frees up the threads for processing. The
addition of this path does not incur significant cost as both
the buffers are on chip. In the remaining part of the study, we
assume the existence of such a databus with a bandwidth of
3.2GB/sec, which is the same as bandwidth of the internal bus
in the IXP 2400.

V. PETRI NET MODEL

A. Petri Net Model for Dynamic Buffering

In [4] we developed a detailed model of IPv4 forwarding
application on IXP2400. This model takes into account the
time needed to perform the IP lookup operation, the contention
for resources and the DRAM packet buffering latency. This
model was validated against a cycle accurate simulator of
IXP2400. We extend this Petri net model to mimic the dynamic
buffering scheme, modeling in detail the DRAM access, where
required, the SRAM access, RBUF and TBUF accesses and
the queue length in the egress port. In order to evaluate the
dynamic packet buffering scheme, we simulate the processing
for a representative header processing application such asIPv4
packet forwarding on the IXP 2400 network processor. One
queue is maintained for every output port. After the packet
lookup is performed, the queue length of the corresponding
output port is updated. In case the queue length for that portis
above the high watermark, the packet is buffered in the DRAM
by moving mpackets to the DRAM. Otherwise, the packet is
moved from the RBUF to TBUF. The control words for the
packet are suitably updated. The queue length corresponding
to each port is adjusted whenever a packet enters and leaves
the network processor. All packets belonging to a flow are
forwarded to the same output port.
Use of colored Petri nets allows us to compose a complex

simulation setup using different components. Traffic from the
flow based model (described in Section V-B) is given as input
to the IPv4 forwarding application model. The SRAM and
hash unit that are used for IP lookup are accurately modeled.
A validated DRAM Petri net model described in [4] is used
for modeling the DRAM.
In the dynamic buffering scheme, RBUF storage is used when

threads are processing the packet, i.e., when the thread is
determining the output port of the packet. When the processing
threads are unable to keep up with the packet arrival rate, the
RBUF occupancy increases. A packet is dropped when there
is not enough space in the RBUF to store it.

Fig. 3. Petri net model for flow generation

B. Flow Based Traffic Generation Module

In real traces, various characteristics of network traffic such
as the packet arrival rate, the packet sizes, the number of
packets in a flow and the number of active flows vary with
time. Barakat et al. [13] describe an efficient flow based model
for uncongested links in the Internet that can capture the
dynamics of the traffic at short timescales. The flows have
a Poisson arrival rate and the total traffic at any instant of



4

(a) Real traffic

(b) Simulated Traffic

Fig. 4. Traces from real traffic and simulation

time is the superposition of the active flows. The flow rates
are independent of each other. Further, they show that in real
traces, the flow sizes and duration are independent of the size
and duration of other flows. To keep the analysis simple, they
assume each flow as a rectangular Poisson shot-noise process.
Theshotrefers to the rate function of the flow. The rectangular
shot-noise implies that the rate of each flow is constant.
In order to accurately model the variation in characteristics

of the network traffic, we use the above flow based model
described in [13]. To generate traffic using the above Poisson
shot noise process model, we develop the Petri net model
shown in Fig. 3. The rate of packet generation for each
flow is determined by the color of the token inGenPacket
place. The traffic rates of these flows are independent of each
other. Based on the color of the token inGenPacketplace the
mean firing time ofFlowRatetransition varies. Each colored
token corresponds to the generation of a rectangular Poisson
shot noise process and their differing firing times simulates
different flow rates. The packets are generated with the length
distribution observed in the Internet core for Abilene trace I2C-
1091276356-2 [14]. TheFlowRate transition places a token
signifying the length of the packet in theFlowPktsplace. The
packets generated by a flow are associated with a single port
based on the color of the token in theFlowPort place. The
transition TransfertoNetworkplaces the tokens at the output
placeNetwork.
TheStopResetFlowandFlowDuration transitions are respon-

sible for stopping active flows and starting new flows. When a
halt token is present in theAck place, theStopResetFlowtran-
sition removes the packet generating token fromGenPacket
place, thus stopping the generation of packets for that flow.
After the completion of the transition, the token is put backin
the GenPacketplace. The flow is again stopped when the halt
token is moved fromGeneratePktsplace toAck place by the
FlowDuration transition. The transition time ofFlowDuration
corresponds to the interval for which the flow is active. Due
to the arrival of new flows and completion of active flows, the
number of active flows at a given instant of time varies.
Validation of the Traffic Generation Module:We validate the

model by checking that traffic generated has similar variation
in rate as the one observed in real network traffic in the core of
the Internet. We adopted the method in [13], where variation

Input DRAM buffering Dynamic buffering
Traffic Transmit Packets Transmit Packets Buffered
(Gbps) rate dropped rate dropped in DRAM
4.90 4.74 1.92% 4.90 0.01% 0.60%
5.57 5.10 4.87% 5.57 0.02% 1.14%
5.42 5.08 3.66% 5.42 0.02% 1.28%
5.51 5.09 4.56% 5.51 0.03% 2.41%
5.67 5.16 5.08% 5.66 0.04% 1.35%

TABLE I
THROUGHPUT AND PACKET DROP RATES WITH A MEAN OF5.41GBPS AND

5.52%VARIATION

in network traffic is measured by recording the throughput
over 200ms windows. A plot of varying traffic rates observed
at 200ms intervals in a real Internet core router (Abilene trace
I2C-1091276356-2) and the traffic generated by our model are
shown in Figure 4. The real trace has a mean rate of 440 Mbps
and a variation of 5.40%. The traffic generated by our model
has a mean of 411 Mbps and a variation of 6.45%. Since we
need to simulate input traffic at higher rates, we increase the
number of flows used for simulation.

VI. PERFORMANCEEVALUATION

In order to evaluate the performance of the dynamic packet
buffering scheme, we study the transmit rates and the number
of dropped packets in the router under identical traffic condi-
tions. The aggregate bandwidth of the output links is 8.1Gbps.
The mean rate of the input traffic is varied with traffic rate
ranging from 5Gbps to 7.2Gbps. The over-provisioning in our
experiments is much lower than that in an actual setting in
Internet core routers where in the link utilization is usually
50% [1], [13]. We note that having lower provisioning for the
output link would require more DRAM buffering and could
potentially lead to more packet drops. The transmit rate and
packet drop rates are measured over 200ms windows. For this
study, we considered Internet core like traffic and notdenial
of service (DOS)like traffic. We show in [4] that the hash unit
is the bottleneck resource while processing DOS attack only
traffic. As a result, improving the buffering scheme for DOS
attack only traffic does not improve the throughput supported
by the NP.

A. Impact of Dynamic Buffering

Table I shows the performance of the two schemes over five
200ms intervals at an input rate of 5.29Gbps and variation of
5.52%. In this experiment, we used 40 threads for processing.
We observe that when the network rate is high, the DRAM
packet buffering scheme drops more packets. This is because
of the DRAM bottleneck discussed in [4]. As all packets
are transferred over the bottleneck data bus, the DRAM does
not have extra bandwidth to absorb bursts of traffic and the
network processor experiences packet drops. On the other
hand, with dynamic buffering scheme the packet drops are
negligible and the scheme is able to support higher throughput.
Also, the percentage of packet data that is buffered in the
DRAM, due to bursts in flows, is shown in column 6. This
percentage is very small as only packets to be output on
congested ports are buffered in the DRAM. The processing
threads are able to forward the packets at the given input rate.



5

Input DRAM buffering Dynamic buffering
Traffic Transmit Packets Transmit Packets Buffered
(Gbps) rate dropped rate dropped in DRAM
5.80 5.18 6.23% 5.78 0.25% 1.43%
5.63 5.10 5.53% 5.61 0.22% 2.88%
5.50 5.07 4.43% 5.47 0.24% 3.37%
7.50 5.86 9.06% 7.27 1.75% 8.36%
6.53 5.78 8.72% 6.44 0.80% 7.05%

TABLE II
THROUGHPUT AND PACKET DROP RATES WITH A MEAN OF6.19GBPS AND

13.48%VARIATION

Input rate Threads Transmit Buffered Packets
(Gbps) rate in DRAM dropped
6.22 8 5.89 2.88% 2.94%
6.22 16 6.13 10.69% 0.72%
6.22 24 6.18 2.79% 0.34%
6.22 32 6.18 4.02% 0.34%
6.22 40 6.18 3.18% 0.33%

TABLE III
TRANSMIT RATES WITH DIFFERENT NUMBER OF THREADS

As expected, with higher traffic rates, the contention for the
output ports increases and therefore the percentage of packets
stored in the DRAM increases slightly. Table II shows the
performance of the DRAM buffering and dynamic buffering
schemes under a mean traffic of 6.19Gbps and higher variation
of 13.48%. We see that the dynamic buffering scheme supports
higher throughput and lower packet drop rates even with high
variation in traffic.

B. Buffer Requirement with Dynamic Buffering

In order to find the buffer utilized during processing, we
measured the buffer requirement when a packet arrives at
and departs from the NP. A packet arrival at the NP or
departure from the NP was referred to as an event. With a
mean traffic of 6.19Gbps, the buffer requirement was less than
10KB for 94% of the events and with a mean traffic rate of
5.42Gbps, the buffer requirement was less than 10KB for 99%
of the events. The maximum buffer requirement was 36KB and
24KB respectively. We observe that more buffer space than the
RBUF and TBUF memory is necessary to store packet only
during bursts in traffic. With dynamic buffering, this additional
memory is provided in the DRAM.

C. Effect of System Parameters

The number of threads dedicated for processing and the value
of the high water mark that is used to determine the need for
DRAM buffering, affect the packet drop rate and the amount
of traffic that is buffered in the DRAM.
In order to understand the number of threads that must be

provisioned for network processing, we ran simulations for
400ms traffic with different number of threads with a fixed
input traffic rate of 6.22Gbps. The throughput and packet drop
rates achieved with different number of processing threads
are shown in Table III. With only 8 threads, the packet
drop rate is about 3%. This is because the small number
of threads are unable to keep up with the rate of packet
arrival. Due to overflow in the RBUF, packets are dropped
even before they can be buffered or forwarded. Consequently,

Input rate Threads Transmit Buffered Packets
(Gbps) rate(Gbps) in DRAM dropped
7.39 8 6.60 5.95% 5.66%
7.39 16 7.09 11.75% 2.25%
7.39 24 7.10 13.10% 2.17%
7.39 32 7.09 16.04% 2.35%
7.39 40 7.06 14.10% 2.58%

TABLE IV
TRANSMIT RATES WITH DIFFERENT NUMBER OF THREADS AT HIGHER

TRAFFIC RATE

Input rate High Transmit Buffered Packets
(Gbps) Watermark(bytes) rate(Gbps) in DRAM dropped
6.33 1600 6.18 27.96% 1.39%
6.33 2240 6.22 16.93% 0.97%
6.33 2880 6.23 12.94% 0.85%
6.33 3520 6.24 8.73% 0.79%
6.33 4160 6.25 4.33% 0.73%

TABLE V
TRANSMIT RATES WITH DIFFERENT THRESHOLD FOR HIGH WATERMARK

the throughput achieved drops. However, when the number
of processing threads is increased to 16 or more, each of the
packets experiences a lower waiting delay in the RBUF. As a
result, packet drop rate reduces. Packet bursts lead to buffering
in the DRAM and there is a slight increase in the DRAM traffic
with 24 and 32 threads. However, when there are 40 threads,
IPv4 processing is more resilient to packet bursts as packet
drop rate is the lowest. Table IV shows the performance of
dynamic buffering with a higher input traffic rate of 7.39Gbps.
We observe that packet drop rates are around 2.5%. This is due
to larger packet build up in the RBUF. However, the packet
drop rate with dynamic buffering is still less than the drop
rate observed with DRAM buffering which dropped more than
5% of the packets with a traffic rate of 6.19Gbps (refer to
Table II). Interestingly, the packet drop rate does not decrease
even with an increase in the number of threads because the
high utilization of the RBUF and TBUF.
Next, we assess the effect of the high watermark on the

amount of traffic buffered. We simulated the performance of
the network processor with different values for this thresh-
old. A low threshold could excessively buffer all packets in
the DRAM due to which the DRAM bottleneck previously
observed would reappear. Table V shows the throughput and
packet drops with various values of the high watermark. Input
traffic with a mean of 6.33Gbps and 32 threads (4MEs with 8
threads enabled) was used. The high watermark in column 2
is the length of the queue associated with each port, beyond
which all packets belonging to this queue are buffered in the
DRAM. When the high watermark is set to 1600 bytes, about
28% of the traffic is buffered in the DRAM, requiring the
RBUF to DRAM and DRAM to TBUF transfer of packets,
reducing the bandwidth necessary to absorb traffic bursts.
This, in turn causes more packets (1.39%) to be dropped.
However, when the value of the high watermark is increased,
the amount of traffic through the DRAM decreases. In this case
the available DRAM bandwidth is able to absorb the packet
bursts, leading to a decrease in the packet drop rate. The packet
drop rate and transmit rate do not change substantially when
the value of the high watermark is above 2880 bytes. This
is due to the small fraction of traffic that is buffered in the



6

Resource Thread Configuration (ME X Threads)
Utilization 1 x 8 2 x 8 3 x 8 4 x 8 5 x 8
Hash Unit 14.2% 15.0% 15.0% 15.0% 15.0%
Thread 27.9% 14.5% 9.1% 6.8% 5.1%
ME 54.3% 28.6% 19.1% 14.3% 11.4%
Data Bus 3.2% 6.0% 4.8% 5.5% 3.40%
Avg. RBUF usage 1444B 1356B 1293B 1284B 1249B
Avg. TBUF usage 1432B 2250B 2310B 2327B 2368B
Packet Drop Rate 2.94% 0.72% 0.34% 0.34% 0.33%

TABLE VI
UTILIZATION OF RESOURCES IN THENP WITH MEAN INPUT TRAFFIC OF

6.22GBPS

DRAM.

D. Resource Utilization with Dynamic Buffering

The Petri net model allows us to analyze the utilization of re-
sources in order to understand the hurdles in achieving higher
throughput rates. Table VI shows the resource usage with a
mean input traffic of 6.22Gbps and different configurations of
MEs and threads. We observe that the hash unit utilization
remains constant around 15%. As expected, the utilization of
threads decreases as their total number increases. Data bus
utilization is below 6% in all the configurations. The data bus
bottleneck that previously manifested when all packets where
buffered in the DRAM [4], has been effectively removed. The
RBUF and TBUF occupancy has a bearing on the ability of
the NP to absorb sudden increase in traffic. A low utilization
of these resources enables the NP to store packets when there
is a traffic burst.
The role of the RBUF is to provide storage to packets when

there is a burst of packets. The number of threads available
for processing determines the duration for which the packet
is stored in the RBUF. Fewer processing threads implies that
the RBUF could overflow leading to packet drops. Thus, we
find that the size of the RBUF and the number of threads
provisioned for processing affect the packet drop rate.

VII. R ELATED WORK

A number of papers have recently studied the size of packet
buffers for Internet links. Dhamdhere, et al. [2] provide a
generalized analytical model to determine the size of packet
buffers in routers, under various constraints on link utilization,
total packet loss rate and queuing delay. They show that when
the output link is congested, the buffer size should be equalto
the bandwidth-delay product. However when the output links
are not congested, as in the case of core Internet routers, the
buffer requirement is given by the Stanford model [1]. These
models assume that the output link has to be fully utilized.
Dynamic buffering strategy is motivated by the observation
that in core routers, the link utilization is low as the output
links are over-provisioned. As a result buffer requirementcan
be further reduced. Here DRAM memory is used for buffering
only when there is a burst of packets in the traffic or there is
congestion in the output link.
Shorten et al.[10] discuss changing the back-off factor in the

additive increase multiplicative decrease (AIMD) congestion
control algorithm of TCP in order to reduce the size of
buffering required. By changing the responsiveness of TCP to

infer congestion, it can be made to adapt to a small buffer size.
While this scheme requires changes in TCP implementation,
our scheme does not envisage any change in the sender’s TCP
implementation.

VIII. C ONCLUSIONS

In this paper, the low link utilization in core Internet links has
been exploited to reduce the buffer requirement. We show that
different on-chip storage locations present in IXP 2400 can
be used to buffer packets during most regimes of the input
traffic. The proposed dynamic buffering strategy effectively
utilizes the on-chip memory for buffering and avoids the slow
DRAM access: a bottleneck in network processing applica-
tions. We use a Petri net model to generate traffic with the
same characteristics as real traces and evaluate the dynamic
buffering strategy in detail. With network traffic of 5.41Gbps,
the proposed dynamic buffering scheme has a lower packet
drop rate than the traditional DRAM buffering scheme. With
16 or more threads for processing, the application can be more
resilient to packet bursts and has low packet drop rates. The
choice of the high water mark determines the amount of traffic
that is buffered in the DRAM. The utilization of the resources
under different traffic rates are measured. DRAM buffering
bottleneck that was previously observed has been removed.

REFERENCES

[1] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
in SIGCOMM ’04: Proc. of the 2004 conf. on Appn, technologies, arch,
and protocols for comp. comm., 2004, pp. 281–292.

[2] A. Dhamdhere, H. Jiang, and C. Dovrolis, “Buffer sizing for congested
internet links,” inINFOCOM 2005: 24th Annual Joint Conf of the IEEE
Comp and Comm Societies. Proceedings IEEE, 2005, pp. 1072–1083.

[3] S. Govind and R. Govindarajan, “Performance modeling and architecture
exploration of network processors,” inQEST ’05: Proc. of the Second
Intl. Conf. on the Quantitative Evaluation of Systems, 2005, p. 189.

[4] B. C. Girish and R. Govindarajan, “A petri net model for evaluating
packet buffering strategies in a network processor,” inQEST ’07: Proc.
of the 4th Intl. Conf. on the Quantitative Eval. of Systems, September
2007, pp. 19–28.

[5] T. Wolf and M. A. Franklin, “Design tradeoffs for embeddednetwork
processors,” inARCS ’02: Proc of the Intl Conf on Arch of Computing
Systems. London, UK: Springer-Verlag, 2002, pp. 149–164.

[6] S. Schenker, L. Zhang, and D. D. Clark, “Some observationson
the dynamics of a congestion control algorithm,”SIGCOMM Comput.
Commun. Rev., vol. 20, no. 5, pp. 30–39, 1990.

[7] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,”IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397–
413, 1993.

[8] L. Zhang and D. D. Clark, “Oscillating behaviour of network traffic: A
case study simulation,”Internetworking: Research and Experience, pp.
101–112, 1990.

[9] C. Villamizar and C. Song, “High performance TCP in ANSNET,”
SIGCOMM Computer Communications Review, vol. 24, no. 5, pp. 45–
60, 1994.

[10] R. N. Shorten and D. J. Leith, “On queue provisioning, network
efficiency and the transmission control protocol,”IEEE/ACM Tran. on
Net., vol. 15, no. 4, pp. 866–877, 2007.

[11] “QDR SRAM - The High Bandwidth SRAM family,”
http://www.qdrsram.com.

[12] Intel IXP2400 Network Processor Hardware Reference Manual, PDF
file, Intel, November 2003.

[13] C. Barakat, P. Thiran, G. Iannaccone, C. Diot, and P. Owezarski, “A
flow-based model for internet backbone traffic,” inIMW 02: Proc of
the 2nd ACM SIGCOMM Workshop on Internet measurment, 2002, pp.
35–47.

[14] “National Laboratory for Applied Network Research,”
http://pma.nlanr.net.




