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ABSTRACT

Data Prefetchers identify and make use of any regularity
present in the history/training stream to predict future ref-
erences and prefetch them into the cache. The training in-
formation used is typically the primary misses seen at a par-
ticular cache level, which is a filtered version of the accesses
seen by the cache. In this work we demonstrate that ex-
tending the training information to include secondary misses
and hits along with primary misses helps improve the perfor-
mance of prefetchers. In addition to empirical evaluation, we
use the information theoretic metric entropy, to quantify the
regularity present in extended histories. Entropy measure-
ments indicate that extended histories are more regular than
the default primary miss only training stream. Entropy
measurements also help corroborate our empirical findings.
With extended histories, further benefits can be achieved

by triggering prefetches during secondary misses also. In
this paper we explore the design space of extended prefetch
histories and alternative prefetch trigger points for delta
correlation prefetchers. We observe that different prefetch
schemes benefit to a different extent with extended histories
and alternative trigger points. Also the best performing de-
sign point varies on a per-benchmark basis. To meet these
requirements, we propose a simple adaptive scheme that
identifies the best performing design point for a benchmark-
prefetcher combination at runtime.
In SPEC2000 benchmarks, using all the L2 accesses as

history for prefetcher improves the performance in terms of
both IPC and misses reduced over techniques that use only
primary misses as history. The adaptive scheme improves
the performance of CZone prefetcher over Baseline by 4.6%
on an average. These performance gains are accompanied by
a moderate reduction in the memory traffic requirements.

Categories and Subject Descriptors

C.1 [Computer Systems Organization]: Processor Ar-
chitectures
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1. INTRODUCTION
Timely access to data is a key performance bottleneck in

modern processors. The performance of memory subsystem
can have a significant impact on the overall performance of
the system [14]. Prefetching [2, 6, 8, 9, 11, 12] is an effective
mechanism to hide the memory access latency.

The goal of any prefetcher is to get data that might be ac-
cessed in the near future into the cache before the actual re-
quest is made by the processor. Prefetchers accomplish this
by learning from the history of memory accesses1 to predict
future references. At a high level, all hardware prefetch-
ers can be conceptually viewed as shown in Figure 1. The
prefetcher tries to learn from the input stream (past access
stream) and looks for certain repetitive behavior that it can
exploit. For instance, a prefetcher can identify and exploit a
constant stride in memory accesses [6]. More sophisticated
prefetchers such as the delta correlation prefetchers [11, 12]
look for Markov correlation between two consecutive entries
of the input stream. In other words, prefetchers primarily
look for any regularity — some repeating pattern — that
might exist in its training stream.

The input stream presented to the prefetcher is a subset of
the complete memory access stream, as higher level caches
filter out the hits. In addition, prefetchers typically use pri-
mary misses2, lines that are requested from the next-level
in the memory hierarchy, as training information. Thus,
prefetchers generally do not exploit any information pro-
vided by secondary misses or cache hits at a particular cache
level.

In this work, we study the impact of extending the his-
tory to include secondary misses and cache hits on the per-
formance of prefetchers. From a performance point of view,
extending the history eliminates more misses compared to
using only primary misses. Extending the history can im-
prove the effectiveness of a prefetcher only if it improves the
regularity present in the training stream.

We use entropy [15], a measure of information content, to
quantify the regularity present in extended histories. Ideally,
a more regular history, characterized by a lower entropy,
should lead to improved prefetcher performance. For all
the delta-correlation prefetchers [12] studied by us, entropy
measurements show that extended histories in general are

1Prefetchers in a last level cache.
2A primary miss initiates a request to the data from the
cache/memory below it, while a secondary miss is a request
to a line that has already been requested by a primary miss
but the data has not arrived yet from the lower level of the
memory hierarchy.
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Figure 1: Conceptual View of a Prefetcher

more regular than history comprised only of primary misses.
The improved regularity as identified by entropy explains
the performance improvements provided by the extended
histories.
Existing prefetch schemes generate new prefetches when-

ever a primary miss takes place3. Extending the history to
include secondary misses and hits allows the choice of addi-
tional trigger points. As secondary misses and hits happen
later in time compared to primary misses, considering them
as trigger points can provide the prefetcher with a improved
history compared to what was available when the primary
miss happened. We observe that triggering prefetches on
secondary misses along with primary misses helps in im-
proving the performance of the prefetchers.
We study the performance of five design points, defined

as a combination of History/Trigger for three correlation
prefetchers, viz., PerPC, CZone and Global [12]4. The his-
tory and trigger points can be a valid combination of primary
misses(P), secondary misses(S) and cache hits(H). The de-
sign points studied are P/P, PS/P, PS/PS, PSH/P, PSH/PS5.
Among these, P/P, is the default design followed currently
by most if not all prefetchers. It should be noted here that
extending the history of the prefetch scheme or introducing
alternative prefetch trigger points requires minimal hard-
ware modifications. Further the modifications required are
agnostic to the underlying prefetch scheme.
The evaluation of the various design alternatives in terms

of history and trigger reveals the following trends:

1. Extended histories provide better performance in terms
of IPC and reduced number of misses compared to us-
ing only primary misses.

2. The performance of extended histories improves fur-
ther by triggering prefetches on secondary misses also.

3. The best performing design point varies across the
prefetchers.

4. For any particular prefetcher, the best performing de-
sign point can vary across benchmarks.

Item 3 and 4 above warrant an adaptive scheme that
can choose the appropriate history/trigger point for a given

3Prefetch hits are treated at par with primary misses.
4Stride prefetchers and stream buffers can be thought of as
special cases of PerPC and CZone prefetchers respectively
5Hits as trigger generates too many prefetch requests and
degrades the performance of the prefetcher. Hence, we do
not study it in detail in this paper.

prefetch scheme and a benchmark. As an initial step, we pro-
pose a simple adaptive scheme that measures the effective-
ness of the various design points and picks the best perform-
ing configuration at runtime. We show that the adaptive
mechanism is able to bridge a significant portion of the per-
formance gap between P/P and the best performing design
point. For the CZone prefetchers, the adaptive scheme per-
forms better than any static design point and improves the
performance on an average by 4.6% over the P/P configura-
tion. A secondary benefit is that the improved performance
is accompanied by a moderate reduction in memory traffic
of 4.1%. Similar behaviour, gains in performance along with
memory traffic reduction, is observed in the case of PerPC
and Global delta correlation prefetchers too.

2. BACKGROUND AND RELATED WORK
In this section we review some of the common prefetching

strategies proposed earlier and discuss in detail the Global
History Buffer GHB and the delta correlation prefetchers.

2.1 Prefetch Strategies
Next line prefetching [2] relies on spatial locality and a

prefetch is issued to the next block in memory on a cache
miss. Simple stride prefetching [6] identifies and exploits
any constant stride that appears in the access stream of
load instructions. In the context of stride prefetching, it is
a well-known practice to consider all the accesses to learn
the stride rather than using only misses. The decision to
use all the accesses was validated primarily through experi-
mental results showing improved performance. No attempt
was made to quantify as to whether the extended histories
improved the regularity of the training information, thereby
improving the predictability of the training information used
by the stride prefetcher.

Markov prefetching [8] (Address correlation) scheme records
streams of addresses and uses Markov correlation to pre-
dict the most likely addresses to be accessed next, given
the addresses of the past few misses. However, address cor-
relation cannot cover the first miss to any address. The
distance prefetching [8] scheme computes and records the
difference between the addresses of consecutive misses and
looks to identify Markov correlation patterns in it. Stream
buffers [9] allow multiple streams of misses to be targeted
simultaneously. It has been shown that using a correla-
tion method, rather than next use or stride, to predict the
prefetch addresses in the streams can improve the perfor-
mance of stream buffer based prefetching [17].

2.2 Global History Buffer

2.2.1 Hardware

Global History Buffer (GHB) [12] is a hardware struc-
ture which stores prefetch history and enables a variety of
prefetchers to be implemented on top of it. It consists of
two key structures, the first being a GHB, a FIFO struc-
ture, which stores the most recent misses. Each entry of
GHB also has a forward and backward pointer that can be
used to point to other GHB entries. The second structure
is an index table that along with the pointers in the GHB
entries is used to link together misses sharing the same char-
acteristic. Each entry in the index table stores a key and a
pointer to the most recent miss suffered by that key in the
GHB. For instance if the key used is the PC suffering the



cache miss, the index table entry points to the most recent
miss suffered by that PC.

2.2.2 Delta Correlation Prefetching

Delta correlation prefetching [12] is one of the schemes
built on top of GHB. Here, delta is the difference between
two consecutive addresses in a stream of addresses. Thus,
a stream of addresses is translated into a stream of deltas.
When a new miss address is added to the prefetcher, delta
correlation computes the two6 most recent deltas in the miss
stream. It then goes back in time along the stored miss
stream and checks for previous occurrences of the two most
recent deltas. The stream of deltas is expected to show
regularity i.e. the likely sequence of deltas that are expected
to follow the most recent pair of deltas will be the same
as the last time. It can be observed that delta correlation
prefetchers rely heavily on the regularity exhibited in their
training stream.
Three variations of delta correlation prefetching have been

studied and they differ in their of choice of the criterion used
to link the misses together into streams. The schemes and
the criteria used in them are: (i) PerPC (P/DC) [12]: Misses
caused by the same load instruction are linked together. The
key into the index table is the PC of the load experiencing
the miss. (ii) Global(G/DC) [12]: All the misses are con-
sidered as a single stream. It is like distance prefetching
without using a table to store the correlation information.
The index table contains a single entry that points to the
head of the GHB where the next insertion will take place.
(iii) CZone(C/DC) [11]: A CZone is a consecutive region of
memory. Addresses missing in the same CZone are linked
together in C/DC. The delta correlation prefetchers have
been shown to give high performance and are one of the
best performing prefetchers studied so far. Hence we use
these prefetchers in our study.

2.3 Prefetcher Enhancements
Aggressive prefetching [20] can fetch many memory blocks

into the cache in anticipation that these lines will be ac-
cessed in the future. However, some of these lines may never
be accessed or get replaced from the cache before they are
accessed. These are referred to as wasted prefetches. As
these unused prefetches waste valuable memory bandwidth,
recent works on prefetchers are directed towards filtering
the prefetch requests once they are generated [10, 18, 19,
21]. It is normally done taking into account the accuracy
of prefetches. More recent methods [18] take into account
a variety of parameters – accuracy, pollution and timeliness
into account to throttle the prefetchers. All these schemes
are agnostic to the history used by the prefetcher.

3. DESIGN SPACE EXPLORATION

3.1 Design Space of Prefetchers
We enumerate the design space of prefetchers along two

dimensions, history (Hist) and trigger (Trig). As cache ac-
cess results in a primary miss(P), secondary miss(S) or a
hit(H), the history for the prefetcher can be any combination
of these three. Earlier works typically use primary misses as
history for the prefetcher. Similarly earlier works used only

6Experimental results in [12] demonstrate that using two
deltas gives the best performance.

primary misses as trigger points to issue prefetches. How-
ever, the presence of secondary miss and/or hits along with
primary miss in the history allows other trigger points as
well (any combination of primary misses, secondary misses
and cache hits triggering the prefetches). Among the vari-
ous possible combinations, we study the following interesting
design alternatives in this paper:

• P/P: Only primary misses are used as history to the
prefetcher, and they trigger prefetches. This is the
most widely used design point and we refer to it as
baseline in the paper.

• PS/P: The history is composed of both primary and
secondary misses but only primary misses are used to
trigger the prefetches. This configuration allows us to
identify the impact of including secondary misses in
the history.

• PSH/P7: All the accesses seen by the cache are used
as history to the prefetcher, but only primary misses
trigger prefetches.

• PS/PS : Primary and secondary misses form the prefetch
history and both of them can trigger prefetches.

• PSH/PS : The history is composed of primary and sec-
ondary misses and hits at the cache level. Primary
and secondary misses can trigger new prefetches in this
configuration.

We do not consider configurations with cache hits triggering
prefetches as it results in a large number of prefetches be-
ing generated, thereby affecting the performance adversely.
In all these configurations, prefetch hits8are always treated
at par with primary misses. This is in-line with the stan-
dard practice of prefetch hits triggering further prefetches,
as prefetch hits are essentially primary misses avoided due
to the effectiveness of the prefetcher.

From a hardware perspective implementing extended his-
tory and primary or secondary misses as trigger requires only
minimal changes to the baseline hardware. It involves mod-
ifying the input to the prefetcher and ignoring the prefetch
requests generated by non-trigger points. No change is re-
quired to be carried out to the cache or the prefetcher it-
self. Further it can be seen that the implementation of
extended history and trigger points is agnostic to the un-
derlying prefetcher used.

3.2 Simulation Methodology
We use the validated alpha simulator sim-alpha[4] for study-

ing the impact of history on delta correlation prefetchers –
PerPC, Global and CZone. The delta correlation prefetch-
ers are considered as they provide significant gains in perfor-
mance at acceptable levels of increase in the memory traf-
fic. We implemented the delta correlation prefetchers on
top of GHB. We used simpoint[16] methodology to identify
representative intervals of length 500M committed instruc-
tions. The benchmark suite considered is SPEC2000. We
discuss results in detail for a set of 14 benchmarks which

7PH/P behaved similar to PSH/P. Hence we do not consider
PH/P as a separate design point in this study.
8Even prefetches that are not timely, ones that cover a part
of the memory access latency only, are treated as primary
misses.



Fetch/Map/Commit
width

8

INT/FP Issue width 6
ROB/LQ/SQ 128/64/64 entries
INT/FP Issue Queue 96 Entries each
Branch predictor 21264’s predictor, 32 Entry RAS
Caches L1 ICache 16KB, 4way, 64B line

size, 1 cycle access
L1 DCache 16KB, 4way, 64B line
size, 1 cycle access
L2 Unified, 1MB, 32Way, 64B
line size, 12 cycle access
MSHR - 32 for Miss, 32 for
Prefetches at each cache
Minimum 400 cycles memory la-
tency
16 Byte wide memory bus

GHB 512 entries to track the misses
512 entry Index table
CZone size – 16K
Prefetch Degree – 16

Table 1: Machine Configuration

have an L2 Misses Per Kilo Instruction(MPKI) greater than
2.5. We also provide summary results for the entire bench-
mark suite9 wherever applicable. The machine configuration
used for this study is shown in Table 1. The timing require-
ments of GHB and the associated prefetch mechanisms are
also modeled faithfully. All the design points used a GHB
that can store 512 addresses. The prefetch degree used in
all the simulations is 16.

4. DESIGN SPACE EXPLORATION
In this section we explore the five design points for the

three delta correlation prefetchers. While it is easier to eval-
uate the performance potential of the design points using
simulation, it does not provide any insight as to whether the
extended history indeed improves the regularity/predictability
of the training stream observed by the prefetchers. To ad-
dress this, we attempt to characterize the various histories,
P, PS and PSH, based on their regularity.

4.1 Impact of Extending the History
We use entropy [15] as a measure for summarizing the

regularity of the various histories. We demonstrate that
entropy is a suitable measure by studying the correlation
between the actual performance and the trends identified
by entropy.
Entropy Basics
Entropy in simple terms is a measure of the information
contained in a stream of symbols [15]. It is defined as:

H(X) = −
n∑

i=1

p(xi)logb(p(xi)) (1)

Here X is the entire message (or a stream of symbols) and
H(X) is its entropy. Each xi is a unique symbol in X and
p(xi) is the probability of occurrence of xi in X. We use base
2 for the logarithm. In practical terms, entropy is a measure
of how hard it is to predict the next symbol that is likely
to be seen in a stream of symbols. The maximum value is
reached when all xis are equally likely to occur. A high value

9Benchmark fma3d did not run in our simulation frame-
work.

for entropy indicates low predictability. When one of the xis
occurs with high probability, it makes the stream more pre-
dictable and it is reflected in terms of a reduced entropy
value. To summarize, lower the value of entropy, more pre-
dictable the stream is. The various training streams, P, PS
and PSH, can be converted to a stream of deltas10 and their
entropy can be estimated using Equation 1.

The above computation treats the entire training stream
as one single entity and tries to estimate how regular it is.
This is similar to the way Global delta correlation prefetcher
treats the entire training stream as one single entity. But in
the case of PerPC and CZone prefetchers, the single training
stream is effectively split into multiple training streams, all
accesses/misses from a particular PC/CZone are treated as
belonging to one stream and there are as many streams as
there are unique PCs/CZones. When the training stream is
split into multiple streams, say one per PC, the entropy can
be computed as

H(X) =
∑

p∈PC

P (p).H(Xp) (2)

Here X is the complete stream, PC is the set of all unique
PCs that have contributed to at the least one access in X.
Xp is the set of all accesses in X that are caused by the
instruction p. P(p) is the probability that a given entry in
X is from p ∈ PC. P(p) is actually computed as (|Xp|/|X|).

While entropy is a simple measure of regularity present
in a stream of symbols, it is only an approximation of the
regularity captured by the prefetchers. This is primarily be-
cause entropy operates after seeing the entire stream and
it ignores the relative ordering of symbols in the stream.
On the other hand the correlation prefetchers that we study
rely on deltas repeating in order. Despite this limitation, we
show that the regularity captured by entropy correlates well
with the observed effectiveness of the various prefetchers.
Regularity Vs Performance
The entropy computations are carried out in an off-line fash-
ion. A trace consisting of all the L2 accesses along with their
hit/miss information is processed to compute the entropies
of the various histories. As the prefetchers used are delta
correlation prefetchers, we convert the stream of addresses
(at cache block level) into a stream of deltas before carrying
out the entropy computation. Here delta is the difference
between successive entries of the stream. The trace also has
the information regarding the load/store instruction that
caused the access. This permits the history to be split ac-
cording to the PC causing the access which is required for
measuring the entropy for PerPC prefetcher.

Figure 2 shows the entropy of the extended histories PS
and PSH used by the PerPC prefetcher normalized to the en-
tropy of the baseline history(P). The entropies are computed
for each stream of accesses/misses caused by a particular PC
and they are weighted together as shown in Equation 2. As
lower entropies imply more regularity, lower normalized val-
ues, less than 1.0, means extending the history makes it more
predictable. Also shown (along the Y2 axis) are the number
of L2 primary misses for PS/P and PSH/P normalized to
that of P/P. We present the IPC and memory traffic results
in Section 6.

The key motivation behind the extended histories is to
improve the regularity observed in the training stream of

10Difference between the block level address of two successive
entries.
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Figure 2: Entropy Vs L2 Misses for PerPC
Prefetcher

prefetchers and thus help eliminate more misses compared
to the baseline configuration. In the case of PerPC the
prefetchers using extended histories, PS/P and PSH/P, re-
duce the primary misses at L2 by 3.8% and 3.7% respectively
over P/P. In 13 of the 14 benchmarks studied in detail, there
is at the least one extended history that experiences lower
misses compared to P/P, with facerec being the only ex-
ception. Even in facerec, PS/P and PSH/P suffer fewer L2
misses compared to a baseline with no prefetcher.
Ideally a reduction in the entropy should lead to a reduc-

tion in the misses, and lower the entropy more the reduction
for a given benchmark. This kind of a correlation between
entropy of the history and misses observed by the prefetcher
is seen in a majority of the benchmarks. In benchmarks like
ammp, art, galgel and swim, PSH has lower entropy than
PS and both of them have entropy lower than that of P.
This translates into PS/P and PSH/P suffering fewer misses
compared to P/P, with PSH/P doing better than PS/P. The
interesting case is in benchmarks like lucas, mcf, mgrid, vpr
and wupwise, where entropy characterizes the PSH stream
as less regular than PS which correlates well with the result
that PSH/P suffers more misses compared to PS/P. Minor
differences in the relative performance of PSH/P and PS/P,
different to that suggested by entropy, is noted in the case
of benchmarks applu and equake. This can primarily be
attributed to the approximate nature with which entropy
captures the behaviour of prefetchers.
Facerec and gcc are the only benchmarks where entropy

varies from the observed behaviour significantly. In facerec,
despite a reduction in entropy for extended histories com-
pared to using only primary misses, PS/P and PSH/P ex-
hibit more misses than P/P. In gcc, the difference with mea-
sured entropy shows up in the relative behaviour of PS/P
and PSH/P. We noticed that these differences are in line
with the number of prefetches issued by PS/P and PSH/P.
In facerec, the number of prefetches issued by PS/P and
PSH/P is 1.8% and 1.3% less respectively compared to the
number of prefetches issued by P/P. This translates into
both the design points suffering more misses than P/P with
PSH/P performing marginally better than PS/P. In gcc,
PS/P generates 1.1% more prefetches compared to PSH/P,
and hence succeeds in eliminating more misses compared to
it. In fact, PSH/P generates 0.3% prefetches less than P/P
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Figure 3: Entropy Vs L2 Misses for CZone
Prefetcher
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Figure 4: Entropy Vs L2 Misses for Global DC
Prefetcher

and as an effect experiences marginally more misses com-
pared to it.

Figure 3 shows the normalized entropy and misses at L2
for the CZone prefetcher. The results observed are simi-
lar to that of PerPC. PS/P reduces the misses experienced
by 2.4% (2.1% for the entire suite) on average compared to
P/P. PSH/P experiences on an average 3.2% less L2 misses
(1.9% for the entire suite) compared to P/P. In terms of
entropy and regularity, a correlation is observed in applu,
art, equake, facerec, gcc, lucas, mgrid, twolf and vpr. Bench-
mark swim is an interesting case where despite the poor
regularity exhibited by PSH, PSH/P performs better than
PS/P. On analyzing this further, we realized that PSH/P is-
sues more prefetches compared to PS/P with only a minor
drop in prefetch accuracy. Differences between the relative
entropies and performance is observable in more cases here
but in general the trend of reduced entropy leading to better
performance holds well enough. This is especially encourag-
ing since entropy is a high-level abstract metric which only
takes into account the frequency of occurrences of deltas and
not the order in which they appear.

The correlation between entropy of the various histories
and their performance can also be observed in the case of



Global delta correlation prefetchers as can be seen from Fig-
ure 4. On an average, PS/P suffers 0.2% more L2 misses
than P/P. But PS/P suffer fewer misses in benchmarks like
ammp, art and galgel compared to P/P. PSH/P suffers 10%
more misses on average compared to P/P. Entropy does es-
pecially well in explaining the poor performance of PSH/P
as the history PSH consistently exhibits higher entropy com-
pared to others. This shows that poor performance in the
case of Global history prefetchers with PSH history is pri-
marily due to the harmful effect of all the interleaved ac-
cesses being seen as one single stream and is not due to rea-
sons like pressure on the GHB structures. We verified this
by studying the performance of the extended histories for
Global delta correlation prefetchers using a GHB containing
2048 entries. Even after increasing the size of the structures
by a factor 4, the difference in performance compared to the
prefetchers using a smaller sized GHB (of 512 entries) was
almost non-existent. The poor performance of PSH/P and
PS/P is only in comparison with P/P. Both these design
points actually performed better than no prefetching.
In general, extending the history to include secondary

misses and hits results in a stream with improved regularity.
The nature of the prefetcher plays a great role in determining
whether extending the history is useful or not. For instance
while PSH is more regular for PerPC prefetchers, they have
poor regularity in the case of Global prefetchers. Also for
a given prefetcher, the impact of extending the history can
vary across the benchmarks. For instance, PSH history im-
proves the regularity of ammp in PerPC prefetchers while it
exhibits poor regularity in mgrid.

4.2 Triggers Vs Performance
Off-chip memory access normally takes hundreds of pro-

cessor cycles. Further, primary and secondary misses are
separated in time. Hence it is possible that the cache had
experienced further misses since the primary miss took place
and there can be an improved history present by the time
the secondary miss takes place. This is one of the reasons
to consider secondary misses as trigger points. In PerPC
prefetchers, the secondary miss can be experienced by a dif-
ferent PC compared to the one that caused the primary miss.
If the PC experiencing the secondary miss has a more regu-
lar history, it might be beneficial to trigger prefetches when
the secondary miss happens.
Figure 5 shows the L2 misses of PS/P, PS/PS, PSH/P,

PSH/PS normalized with respect to P/P for the PerPC
prefetcher. The positive impact of triggering prefetches on
secondary misses can be seen from the improved perfor-
mance of PS/PS and PSH/PS compared to PS/P and PSH/P
respectively. PS/PS reduces the misses seen in P/P by
8.8%. PSH/PS, the best performing configuration, expe-
riences 10% less misses compared to P/P. In all the bench-
marks except facerec, triggering prefetches also during sec-
ondary misses helps in eliminating more misses. The poor
performance in facerec is primarily due to the lower prefetch
accuracy11 exhibited by PS/PS and PSH/PS compared to
PS/P and PSH/P respectively. Overall, though PSH/PS
eliminates more misses compared to the other design points,
the best performing design point varies on a benchmark by
benchmark basis. For instance, PS/PS is the best perform-
ing configuration for applu, equake and mgrid. And P/P
happens to be the best performing configuration for facerec.

11Fraction of useful prefetches among the total prefetches.
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Figure 5: Normalized L2 Misses for PerPC
Prefetcher
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Figure 6: Normalized L2 Misses for CZone
Prefetcher

The performance of the various design points in terms
of the L2 misses for the CZone and Global prefetchers are
shown in Figures 6 and 7 respectively. In CZone, PS/PS and
PSH/PS experience 15.5% and 22% fewer misses compared
to P/P. For the Global prefetchers, PS/PS eliminates 13%
more misses compared to P/P. Even PSH/PS unlike PSH/P
suffers fewer misses, 2.7% less, compared to P/P.

In general triggering prefetches on secondary misses proves
beneficial in all the prefetchers studied by us. But the best
performing configuration varied on a per benchmark basis
for any given prefetcher.

5. ADAPTIVE SCHEME
From the previous sections, it can be observed that ex-

tending the history to include secondary misses and hits can
improve the regularity observed in it, thereby eliminating
more misses compared to using only primary misses. But
the right history to use varies from prefetcher to prefetcher.
Even for the same prefetcher, different benchmarks favoured
different histories. Similar trends are observed in the case
of secondary misses triggering prefetches too. In effect, the
observed trends make a case for attempting to identify and
use the right configuration, in terms of history and trigger
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Figure 7: Normalized L2 Misses for Global DC
Prefetcher

points, at runtime. We propose and evaluate one such at-
tempt in this section.
The primary requirement of any adaptive scheme is to be

able to store the three different histories – P, PS and PSH. In
this work, we use three separate GHBs (each containing 512
entries) to store the three different histories used. Though
this increases the storage requirements of GHB, they do not
have any adverse impact on timing requirements as they
are situated off the critical path. It is possible to have one
single monolithic GHB with a set of backward and forward
pointers, one set of pointers for each history. As this would
require significant hardware changes to the well understood
and easy to implement GHB structure, we plan to pursue
this aspect as part of future work.
The best design point for a benchmark-prefetcher com-

bination is one that is able to eliminate more misses. In
other words, on a primary miss, the adaptive scheme should
have the ability to identify the design points that could have
avoided the miss. The problem can be viewed as set mem-
bership testing. Whenever a primary miss happens, we need
to ascertain as to whether any of the design points generated
a prefetch for it in the past. We use a set of bloom filters [3],
one per design point, to approximately represent the set of
prefetch addresses generated by each of the design points.
Bloom filters have been used for similar purposes in many
earlier studies [1].
A bloom filter is essentially a bit vector and a set of hash

functions that converts set elements into indices that can be
used to index the bloom filter. When a new element is to be
added to the set, the hash functions are applied to the new
element and a set of index locations are arrived at. The bits
at the computed index locations of the bloom filter are set
to 1 to mark the insertion of the new element. Checking for
set membership involves index computation and verifying as
to whether all the index locations are set. As bloom filter is
an approximate representation, they can sometimes say that
an element has been inserted while it has not been. Such
instances are called false positives. Multiple hash functions
are used to reduce the false positive rates. It is important
to note that a bloom filter does not provide false negatives
– when it says an element has not been inserted, it is indeed
the case.
In our proposed adaptive scheme, we use one bloom fil-

ter per design point to keep track of the set of addresses
that would have been prefetched by that design point. Each
bloom filter is made up of 2048 bits (256 Bytes in size).
Three hash functions are used to index the bloom filter. The
hash functions used in this study are simple ones, which pick
the first 11, last 11 and middle 11 bits of any prefetch ad-
dress12. As the hash functions just pick consecutive chunks
of bits, they are inexpensive to implement. There are two
functional aspects to the adaptive scheme, (i)Update – which
deals with the mechanisms behind the storage of the set
of prefetches generated by the various design points and
(ii)Analysis – which makes use of the stored information
to identify the best performing prefetcher design point.

Analysis: Whenever a primary miss happens, the bloom
filters for all design points are queried for membership using
the address (at block level). A positive response indicates
that the miss could have been covered by the corresponding
design point. Note that this is an over-estimation of the
benefits as bloom filters can give some false positives. A set
of counters, one per design point, is used to keep track of the
number of misses covered by the various design points. On a
successful response from the bloom filter, the corresponding
counter is incremented by one. We observe the behaviour of
the design points over a period of time (typically 16K misses
at L2 in our simulation), and at the end of the interval,
identify the best performing prefetcher in that interval. This
is achieved by checking the counter values and choosing the
design point that covered the maximum number of misses.
All the bloom filters and the counters are cleared and the
next observation interval is started. In case if all the bits
in any bloom filter are set before the end of the interval,
the interval is terminated immediately, the best performing
prefetcher is identified, the bloom filters are cleared and the
next observation interval is started.

Update: On a primary miss, all the three GHBs are to be
updated. While only two, corresponding to PS and PSH, are
to be updated on a secondary miss. A hit updates only the
GHB corresponding to PSH. Primary misses and secondary
misses also act as prefetch trigger points for one or more of
the design points. When a design point generates prefetches,
it uses the generated addresses to update the corresponding
bloom filter. Also if the design point had been identified as
the best performing design point in the previous interval (as
explained in Analysis above), then the prefetch requests are
also sent to the main memory to start the data access.

Instead of using a bloom filter, it is possible to use other al-
ternatives like duplicate tags coupled along with mechanisms
like SBAR [13]. The principal behind all these approaches
is the same and comparing the merits of alternative ways
to identify the best performing design point is beyond the
scope of this paper and is left to future work.

6. PERFORMANCE RESULTS
In this section, we look at the performance in terms of

IPC and memory traffic of the various design points and
the adaptive scheme. The behaviour of the various design
points in terms of their ability to eliminate misses has been
presented earlier. We study the behaviour of the adaptive
scheme in detail in the context of CZone prefetchers.

The P/P configuration of the CZone prefetcher improves

12The addresses are at cache block size i.e. the bits used to
index into a block are ignored.
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Figure 8: IPC Gain over P/P for CZone Prefetcher
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Figure 9: CZone: Memory Traffic Reduction Over
P/P

the performance in terms of IPC by 81% (53% for the entire
suite) on an average over no prefetching for the 14 bench-
marks studied in detail. The corresponding gains for PerPC
and Global prefetchers are 88% (58% for the entire suite)
and 48% (33% for the suite) respectively. These signifi-
cant gains are in line with earlier studies observing the high
performance provided by the delta correlation prefetchers.
Figure 8 shows the IPC gains obtained by PS/P, PS/PS,
PSH/P, PSH/PS and the adaptive design over P/P prefetch-
ing for CZone prefetchers. The design points PS/P, PS/PS,
PSH/P and PSH/PS show on an average 13 0.5%, 3.6%,
0.3% and 4.0% IPC gains over P/P. The performance trend
observed in the various benchmarks is in line with the reduc-
tion in misses observed earlier for the various design points.
Significant reduction in misses observed in cases like art,
translates to higher gains in performance. PSH/P shows a
performance loss in equake, mgrid and swim. Entropy iden-
tified the PSH stream to be less regular in these benchmarks.
While equake suffers due to more misses at L2, mgrid and
swim lose performance due to a drop in the accuracy of
prefetches generated by PSH/P compared to P/P.

13We use arithmetic mean in this paper to compute the av-
erage.
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Figure 10: CZone Adaptive Scheme: Fraction of
times various designs are selected

In 13 out of the 14 benchmarks, the adaptive scheme al-
ways performs better than P/P even though some of the
design points lose performance compared to P/P. The adap-
tive scheme improves the IPC on an average by 4.6% over
P/P(2.8% for the entire benchmark suite). The best per-
forming static design point PSH/PS managed to improve
the performance by 4.0% (2.3% for the entire suite). The
adaptive scheme also reduces the L2 misses seen in the P/P
by 22.3% (38% is the average for the entire suite). All of
these leads to a secondary benefit of a moderate reduction in
the memory traffic requirements compared to P/P by 4.1%
(2.1% for the entire suite). The reduction in memory traffic
is shown in Figure 9.

In most of the cases, the performance of adaptive scheme
is close to that of the best performing design. In benchmarks
like facerec, the adaptive scheme manages to outperform all
the individual design points. Figure 10 shows the fraction
of times the various designs are identified and selected as
best performing configuration for the benchmarks studied
in detail by us. It can be seen that where there is one clear
best performing configuration like art, the adaptive scheme
also picks the best performing configuration over 90% of the
time. In facerec, alternating between the two best perform-
ing configurations, PS/PS and PSH/PS, helped the adaptive
scheme to perform marginally better than the best perform-
ing design point. In future work, we plan to explore proac-
tive adaptive schemes that can capture the performance im-
pact of the prefetchers along with estimating the reduction
in misses.

Figure 11 shows the IPC gain obtained by the various de-
sign points and the adaptive scheme for the PerPC prefetcher
over P/P. PS/P, PS/PS, PSH/P and PSH/PS improve IPC
on an average by 0.7% (0.2% for the entire suite), 1.9%
(1.2%), 1.0%(0.3%), 2.5%(1.5%) respectively over P/P. For
a majority of the benchmarks, the performance trends ob-
served are in line with the reduction in misses observed ear-
lier. The only exceptions being mcf, swim and wupwise,
where some of the prefetch opportunities are lost due to
non-availability of free MSHRs. The adaptive scheme pro-
vides an IPC gain of 1.7% (1.8% for the suite) over P/P.
The L2 misses are reduced by 9.7% (32.8% for the entire
suite) compared to P/P. As a positive side-effect, memory
traffic reduces by 1.4% (0.6% for the suite) compared to
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Figure 11: PerPC Prefetcher: IPC Gain over P/P
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Figure 12: Global: IPC gain over P/P

P/P. The trend of adaptive scheme performing better than
any design point (in gcc, mcf and mgrid) or as close to the
best performing design holds for all the benchmarks except
wupwise.
The results for the Global prefetcher are shown in Fig-

ure 12. While PS/P shows a minor loss of 0.7% on an average
compared to P/P, PS/PS manages to improve the perfor-
mance of P/P by 1.5%. This behaviour is similar to the other
prefetchers where triggering prefetches on secondary misses
helped improve the performance further. PSH/P suffers a
6.7% performance loss compared to P/P. PSH/PS reduces
the losses to 4.2% over P/P. This is primarily due to the poor
regularity, measured in terms of entropy, of the history com-
prising all the accesses(PSH). This is most evident in case
of benchmarks art, equake, facerec, mgrid and swim. The
significant performance losses suffered by PSH/P in these
benchmarks compared to P/P indicates the importance of
the design space exploration carried out by us. It shows that
though extended histories can provide better performance, it
need not be so for all cases. And it also shows that the best
performing extended history might vary from one prefetcher
to another, even among prefetchers sharing much in common
like the delta correlation prefetchers. In these benchmarks,
the adaptive scheme performs well in picking the right con-
figuration and avoiding ones harmful to the performance,
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Figure 13: Access Map Prefetching – IPC gain over
P/P

thereby reducing the losses seen in comparison to P/P. It is
to be noted that PSH/P and PSH/PS perform badly only
in comparison with P/P. Over a machine with no prefetch-
ing PSH/P and PSH/PS provide 32% and 36% gain in IPC
respectively. The general trend of adaptive scheme perform-
ing as close to the best performing design holds in this case
too. The adaptive scheme even manages to perform better
than P/P in benchmarks like art, equake and swim.
Data Prefetching Championship
We study the impact of extended history and trigger points
in two of the top performing prefetchers proposed in the
JILP Championship Data Prefetching Contest – DPC-1.
Access Map Prefetch
Access map prefetching [7] is a prefetching technique that
can overcome the negative side effects – reordering of mem-
ory accesses – of compiler and micro-architectural optimiza-
tions. Figure 13, shows the performance improvement in
terms of IPC experienced by the various design points over
P/P for access map prefetching14. P/P improves perfor-
mance by 62.6% over no prefetching. The general trend
is that the alternative design points provide better perfor-
mance than P/P in a majority of the benchmarks. Extend-
ing the history proved to be beneficial with PS/P performing
better than P/P and PSH/P providing further gains over
PS/P. Secondary misses as prefetch trigger points improved
the performance of the corresponding design points further.
The best performing scheme PSH/PS provides a 5% gain
in performance over P/P. This performance improvement
is accompanied by an 1.8% reduction in memory traffic re-
quirements.
Local Delta Buffer
The prefetching scheme proposed in [5] extends the GHB
to include a small local delta buffer(LDB) to hold the most
recent deltas of loads exhibiting predictable behaviour. The
scheme also exploits simple correlation and global stride
along with PerPC delta correlation. For the purpose of our
study, we extended the GHB to include a 32 entry LDB15.
P/P improved IPC by 85.3% compared to no prefetching.
Similar to PerPC, as can be seen from Figure 14, extended
history and trigger points are key to improving the perfor-

14A 64 entry fully-associative access map is used in this study.
15No prefetching was used at L1.
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Figure 14: Local Delta Buffer – IPC gain over P/P

mance of this scheme. In fact, for most of the benchmarks,
the behaviour of the various design points is similar to that
observed in the case of PerPC. The best performing configu-
ration is PSH/PS which improves the performance over P/P
by 3.3%. This gain is accompanied with a traffic reduction
of 2.2%.

7. CONCLUSIONS
Data prefetchers exploit regularity in their training in-

formation. Typically, the training stream is comprised of
primary misses at a cache level. In this work we studied the
effects of extending the training information to include sec-
ondary misses and hits. Extended histories performed better
than using primary misses only and were able to eliminate
more misses at the last level cache (L2 in our study). We
measured the regularity present in the extended histories us-
ing the information theoretic metric entropy. Entropy mea-
surements indicated that extended histories are more regular
compared to history comprised of primary misses only and
this correlated well with the reduction in misses provided by
the extended histories in various prefetchers.
Extended histories also permitted triggering prefetches at

points other than primary misses. In this work we identified
that triggering prefetches at secondary misses along with
primary misses can further improve the performance of ex-
tended histories. We studied the design space comprised
of extended histories and trigger points using SPEC2000
benchmarks. The studies indicated that the best performing
design point in terms of extended history and trigger point
can vary from benchmark to benchmark and from prefetcher
to prefetcher. The best performing design point improved
the performance in terms IPC by 4.0% on an average com-
pared to the baseline prefetch mechanism that relied only
on primary misses.
We proposed and evaluated a simple adaptive scheme to

identify the best performing design point for a given bench-
mark and adapt dynamically. The adaptive scheme provided
performance improvement in terms of IPC by 4.6% on an
average compared to the baseline prefetch mechanism.
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