Lab for High Performance Computing SERC, Indian Institute of Science
Home | People | Research | Awards/Honours | Publications | Lab Resources | Gallery | Contact Info | Sponsored Research
Tech. Reports | Conferences / Journals | Theses / Project Reports

Taming Control Divergence in GPUs through Control Flow Linearization

Compiler Construction - 23rd International Conference, CC 2014, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014
Grenoble, France, April 5--13, 2014

Authors

  1. Jayvant Anantpur, Supercomputer Education and Research Centre
  2. R. Govindarajan, Supercomputer Education and Research Centre; Department of Computer Science and Automation

Abstract

Branch divergence is a very commonly occurring performance problem in GPGPU in which the execution of diverging branches is serialized to execute only one control flow path at a time. Existing hardware mechanism to reconverge threads using a stack causes duplicate execution of code for unstructured control flow graphs. Also the stack mechanism cannot effectively utilize the available parallelism among diverging branches. Further, the amount of nested divergence allowed is also limited by depth of the branch divergence stack. In this paper we propose a simple and elegant transformation to handle all of the above mentioned problems. The transformation converts an unstructured CFG to a structured CFG without duplicating user code. It incurs only a linear increase in the number of basic blocks and also the number of instructions. Our solution linearizes the CFG using a predicate variable. This mechanism reconverges the divergent threads as early as possible. It also reduces the depth of the reconvergence stack. The available parallelism in nested branches can be effectively extracted by scheduling the basic blocks to reduce the effect of stalls due to memory accesses. It can also increase execution efficiency of nested loops with different trip counts for different threads. We implemented the proposed transformation at PTX level using the Ocelot compiler infrastructure. We evaluated the technique using various benchmarks to show that it can be effective in handling the performance problem due to divergence in unstructured CFGs.

Download

Full Text